2.1.2 Principio multiplicativo.

 Este principio nos dice que si tenemos un evento que puede ocurrir de "n" formas, y por cada una de ellas otro evento puede ocurrir "m" veces, entonces ambos eventos pueden ocurrir a la vez de m*n formas.


Como en esta imagen se puede observar que hay 3 elecciones de camiseta, o sea 3 formas de elegir una y 4 de elegir un pantalón, por lo que el numero de combinaciones para elegir tanto un pantalón como una camiseta es 3x4 = 12

Se puede denotar como:


P(A y B) = nA * nB


donde nA son las formas en que A puede suceder y nB son las formas en que B puede suceder

Ésta formula tambien funciona si hay más de dos eventos, para ello basta con multiplicar todas las formas de todos los eventos, siempre y cuando todos puedan ocurrir al mismo tiempo en cualquiera de sus formas


Bibliografía

Huircan Cabrera, M. (2012). AZAR Y PROBABILIDAD. https://epja.mineduc.cl/wp-content/uploads/sites/43/2016/04/201404141139110.GuiaN6MatematicaIICiclodeEM.pdf

Comentarios

Entradas más populares de este blog

2.4 Probabilidad con Técnicas de Conteo: Axiomas, Teoremas.

2.1.4 Permutaciones.

2.7 Eventos independientes: Regla de Bayes